sc94597 said: This post explains why 8nm doesn't make sense from a "Nintendo goes cheap and low power" perspective. Either our assumptions about power consumption are wrong or the process node (8nm) is wrong. Which one seems more likely? "However, while it's reasonable to design a chip with intent to clock it at the peak efficiency clock, or to clock it above the peak efficiency clock, what you're not going to see is a chip that's intentionally designed to run at a fixed clock speed that's below the peak efficiency clock. The reason for this is pretty straight-forward; if you have a design with a large number of SMs that's intended to run at a clock below the peak efficiency clock, you could just remove some SMs and increase the clock speed and you would get both better performance within your power budget and it would cost less." "The above section wasn't theoretical. Nvidia and Nintendo did sit in a room (or have a series of calls) to design a chip for a new Nintendo console, and what they came out with is T239. We know that the result of those discussions was to use a 12 SM Ampere GPU. We also know the power curve, and peak efficiency clock for a very similar Ampere GPU on 8nm.
"So, what manufacturing process can give a 2.5x improvement in efficiency over Samsung 8nm? The only reasonable answer I can think of is TSMC's 5nm/4nm processes, including 4N, which just happens to be the process Nvidia is using for every other product (outside of acquired Mellanox products) from this point onwards. In Nvidia's Ada white paper (an architecture very similar to Ampere), they claim a 2x improvement in performance per Watt, which appears to come almost exclusively from the move to TSMC's 4N process, plus some memory changes." |
We are speculating on rumors is the issue.